G-Box binding factor1 reduces CATALASE2 expression and regulates the onset of leaf senescence in Arabidopsis.

نویسندگان

  • Anja Smykowski
  • Petra Zimmermann
  • Ulrike Zentgraf
چکیده

Hydrogen peroxide (H(2)O(2)) is discussed as being a signaling molecule in Arabidopsis (Arabidopsis thaliana) leaf senescence. Intracellular H(2)O(2) levels are controlled by the H(2)O(2)-scavenging enzyme catalase in concert with other scavenging and producing systems. Catalases are encoded by a small gene family, and the expression of all three Arabidopsis catalase genes is regulated in a senescence-associated manner. CATALASE2 (CAT2) expression is down-regulated during bolting time at the onset of leaf senescence and appears to be involved in the elevation of the H(2)O(2) level at this time point. To understand the role of CAT2 in senescence regulation in more detail, we used CAT2 promoter fragments in a yeast one-hybrid screen to isolate upstream regulatory factors. Among others, we could identify G-Box Binding Factor1 (GBF1) as a DNA-binding protein of the CAT2 promoter. Transient overexpression of GBF1 together with a CAT2:beta-glucuronidase construct in tobacco (Nicotiana benthamiana) plants and Arabidopsis protoplasts revealed a negative effect of GBF1 on CAT2 expression. In gbf1 mutant plants, the CAT2 decrease in expression and activity at bolting time and the increase in H(2)O(2) could no longer be observed. Consequently, the onset of leaf senescence and the expression of senescence-associated genes were delayed in gbf1 plants, clearly indicating a regulatory function of GBF1 in leaf senescence, most likely via regulation of the intracellular H(2)O(2) content.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phosphorylation Affects DNA-Binding of the Senescence-Regulating bZIP Transcription Factor GBF1

Massive changes in the transcriptome of Arabidopsis thaliana during onset and progression of leaf senescence imply a central role for transcription factors. While many transcription factors are themselves up- or down-regulated during senescence, the bZIP transcription factor G-box-binding factor 1 (GBF1/bZIP41) is constitutively expressed in Arabidopsis leaf tissue but at the same time triggers...

متن کامل

Molecular genetic control of leaf lifespan in plants - A review

Leaf senescence constitutes the last stage of leaf development in plants and proceeds through a highly regulated program in order to redistribution of micro- and macro-nutrients from the senescing leaves to the developing/growing plant organs. Initiation and progression of leaf senescence is accompanied by massive sequential alterations at various levels of leaf biology including leaf morpholog...

متن کامل

ORE9, an F-box protein that regulates leaf senescence in Arabidopsis.

Senescence is a sequence of biochemical and physiological events that constitute the final stage of development. The identification of genes that alter senescence has practical value and is helpful in revealing pathways that influence senescence. However, the genetic mechanisms of senescence are largely unknown. The leaf of the oresara9 (ore9) mutant of Arabidopsis exhibits increased longevity ...

متن کامل

Blue light-dependent interaction between cryptochrome2 and CIB1 regulates transcription and leaf senescence in soybean.

Cryptochromes are blue light receptors that regulate light responses in plants, including various crops. The molecular mechanism of plant cryptochromes has been extensively investigated in Arabidopsis thaliana, but it has not been reported in any crop species. Here, we report a study of the mechanism of soybean (Glycine max) cryptochrome2 (CRY2a). We found that CRY2a regulates leaf senescence, ...

متن کامل

Transcription Factor ATAF1 in Arabidopsis Promotes Senescence by Direct Regulation of Key Chloroplast Maintenance and Senescence Transcriptional Cascades.

Senescence represents a fundamental process of late leaf development. Transcription factors (TFs) play an important role for expression reprogramming during senescence; however, the gene regulatory networks through which they exert their functions, and their physiological integration, are still largely unknown. Here, we identify the Arabidopsis (Arabidopsis thaliana) abscisic acid (ABA)- and hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 153 3  شماره 

صفحات  -

تاریخ انتشار 2010